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The Piecewise Ergodic Problem for Gas Systems

HOWARD E. CONNER

Mathematics Research Center
Mathematics and Information Sciences Division

Abstract: To inform ourselves and others about the innate relaxation structures
of nonequilibrium theory, we present in this report a brief outline of the piecewise ergodic
problem of organizing and ordering the various relaxation processes of a gas system.
Our outline follows the development of G. E. Uhlenbeck.

The central problem stimulating this work is loosely described: What are the connections
and relations between the coarse phenomenological laws of gas dynamics and the fine detailed
laws of classical mechanics governing a molecular system?

Phenomenologically, the physical gas can be described very well using the concepts of
temperature, pressure, viscosity, etc. without exact knowledge of the intermolecular forces
and without constant referral to the molecular behavior. Of course, less information about the
system is stored in this form of description than is stored in the exact knowledge of the motions
of all individual molecules; however, the latter description presents a formidable problem of
extracting information.

Several descriptions are available with different levels of information and simpler methods
of information retrieval. The information level is essentially determined by the choice of "state
variables" used to describe the system; i.e., the choice of phase space. The choice of state vari-
ables is imposed by the particular experimental phenomena which is studied.

As emphasized by Uhlenbeck [I], a given set of state variables will be useful for the extrac-
tion of information provided it is (a) closed, meaning we can ignore the phase spaces of the descrip-
tions with greater information, and (b) causal, meaning we can make predictions from initial data.

The most detailed (in fact, totally exact) description is made using the instantaneous assign-
ment of position x and velocity v coordinates to each of the N molecules; so that, a state variable
on this information level is a point p = (xiv), ... , (X5,vn) in 6N space. The motion of the point
p(t) in the phase space is governed by the associated Hamiltonian system of equations: For
unit mass points interacting through additive central forces with a common interaction potential
and no outside forces, the given Hamiltonian of the system is [la]

N 2
H(p) = E +A x ) (1)

i=1 i<j

and the equations of motion for the spatial and velocity coordinates are

i O= H I -i _ N, (2a)aH
xi = d iH I -_ i s- N. (2a)

i xi
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The system can also be described exactly using the (dual) Liouville equation governing
the evolution of the distribution function W( t,p) for the system to be found in the state p at
time t. The distribution function W(t,p) is a closed and causal state variable.

A second description with less information and incorporating less detail is made using
the "molecular" distribution function F (t,x,v) for the number of molecules in an elementary
volume of the six-dimensional phase space for a single molecule.

Classically, the evolution of F for a dilute gas is governed by the famous integral-differential
equation of Boltzmann [2a]:

a =-v grad. F + fdvf dgl(g,O) (F'F,'-FFI), (3)

where the indices on F indicate the four velocity variables describing a binary collision, namely,
(vvA) - (vv;); where g = Iv- v- I = I v' - v; is the magnitude of the relative velocity, which is
rotated through an angle 0 in the collision plane by a collision; and where I (g,0) is the differential
collision cross section (probability) for a (g,O) collision in unit time and is determined from the
known intermolecular potential q).

If we assume F is defined by Eq. (3), then F is a closed-state variable, since Eq. (3) requires
no knowledge of the molecular background except qualitative features of p. However, the
determination of I (g,O), using classical mechanics, requires a referral to the molecular descrip-
tion. F is also apparently causal, since it seems solutions of Eq. (3) are uniquely determined by
their initial values F (Oxv).

Again a coarser description is made using the experimental quantities

p = mass density,
Q = thermal energy density,
E = average velocity vector,

Pij= pressure tensor,
qi = thermal flow density vector.

If these quantities are related to various moments of the molecular distribution function F,
giving

p =fF dv, (4a)

Q = 2 f IUJ2 F dv, (4b)

Ei = f vi F dv, (4c)

Ui = vi- i, (4d)

Pij = p f UjUjF dv, (4e)

qi =.p 2 Uj I Uj2F dv, (4f)
2
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then it is possible to derive the conservation laws [2b]:

at + div (p-) = 0, (5a)
at

Dt =-E , I S i ' 3, (5b)

p D -+ E Pij Dij (50

where

D a 3 a

Dt at E jl

Dij~s (au1T ±-ti)
D Iax -Wx i d I

The state variables p, Q, 1-, P, and q are closed relative to the molecular background; how-
ever, they are not closed relative to the "kinetic" background determined by Eq. (3). The con-
servation Eqs. (5) contain too many unknowns.

A still coarser description is made on the "fluid" level by choosing the mass density p, thermal
energy density Q, and average thermal velocity it as the principle state variables. Classically
they are related through the Navier-Stokes equations of hydrodynamics, which can be obtained
from Eqs. (5) by using the Newton and Fourier laws [2c], with known viscosity yU and heat
conduction K coefficients, to calculate the pressure tensor Pu and heat flux qj:

p 2j = 2 Q~ii-2/i (Dij 3 E Dit 8v) (6a)

qi= K OQ (6b)
axi,

Labeling the first of the descriptions as dynamic (W), the second as kinetic (F), and the third
as hydrodynamic (p,Q,it), Uhlenbeck [3] posed the following problem: try to follow the gas
to thermal equilibrium through the various descriptive levels; dynamic to kinetic, kinetic to
hydrodynamic, and hydrodynamic to thermal equilibrium.

Many researchers have studied the connective relations between the different levels of
description: Bogoliubov [4], Frieman [5], Sandri [6], McCune, Sandri, and Frieman [7],
Kirkwood [8], and Prigogine and Balescu [9]. A paper by Cohen [10], gives a comparison
of several methods and contains an extended bibliography. Of course the original works of
Boltzmann [I I] are an indispensible foundation.

Let us concentrate on a connection between the kinetic and hydrodynamic descriptions.
Suppose F is a solution of the Boltzmann equation, Eq. (3), and define the mass density p,

thermal energy density Q, and average thermal velocity u using Eqs. (4a) through (4c). These
are chosen as the principle state variables for a hydrodynamic description, since they are less
sensitive to collisions than P and q. Since the conservation equations, Eqs. (5), derived from
Eq. (3) by simply taking velocity moments, contain the pressure tensor P and thermal flow
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density vector q, the state variables p, Q, and a are generally not closed, being tied to the kinetic
background F through P and q. Curiously, Maxwell [12] found that, after a certain relaxation
time, P and q attain quasi-equilibrium values which depend only on the gradients of the hydro-
dynamic variables and not on the initial values of P and q.

This suggests that the stress tensor P and thermal flow density vector q can be eliminated
from Eqs. (5) by expressing them as gradients of the hydrodynamic variables. If this is true,
then the consequent closed conservation equations for p, Q, and 17 would possibly determine
them from their initial values. As a result the classical Navier-Stokes equations would then
become an approximation to the true conservation equations for p, Q, and u and the Newton-
Fourier laws would become an approximation to the true expressions of P and Q as gradients of
p, Q, and ii. However, we must recall the existence of solutions of the Boltzmann equation
with nonzero stresses and zero gradients of the hydrodynamic variables.

Hilbert, Chapman, Enskog and others have formulated methods for extracting information
about p, Q, and ii from F. A paper of Grad [13] contains a useful comparison of the Hilbert
and Chapman-Enskog methods. In essence, these methods develop algorithms for constructing
special (Hilbert) solutions F for which P and q can be determined using gradients of p, Q, and
U.

Grad [13] has developed an asymptotic theory relating the formal Hilbert solutions of the
Hilbert and Chapman-Enskog algorithms to actual solutions of the Boltzmann equation. McCune,
Morse, and Sandri [ 14] have developed an asymptotic analysis of the transient behavior of the
stress tensor P and thermal vector q as the gas relaxes to its fluid description.

Most, if not all, of the past work focused on developing methods for extracting the desired
information contained in the distribution function F, assuming the necessary relaxation structure
existed. As a rule the required relaxation parameters are developed and introduced in the context
of the molecular background and not as characteristic parameters of the equation.

Recently, McKean [15] developed a characterization of the Hilbert solutions and showed
the relationship to ordinary solutions for a linear two-state system, corresponding to the lineariza-
tion about an equilibrium state in a two-state nonlinear system with either colinear or uniform
scattering laws. This work and my personal association with McKean, while visiting Rockefeller
University (1966-1968), prompted the investigations I am undertaking.
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